

Feature:

- Clutch for manual adjustments.
- Maintenance free.
- Position indicator.
- Control signal fully programmable.
- Fail safe by Enerdrive System ${ }^{1}$ (on model $060 \& 080$).
- Auxiliary switches (on model $020 \& 080$).

Old Number
TBM4000A
TBM4021A
TBM4060A
TBM4080A
RBM6000A
RBM6021A
RBM6060A
RBM6080A

TM000
TM020
TM060
TM080
RM000
RM020
RM060
RM080

Technical Data	TM000 TBM4000A	TM020 TBM4021A	TM060 тBM4060A	TM080 тBM4080A	RM000 RBM6000A	RM020 RBM6021A	RM060 RBM6060A	RM080 RBM6080A
Auxiliary switches	No	Yes(2)	No	Yes(2)	No	Yes(2)	No	Yes(2)
Fail safe - Enerdrive	No		Yes		No		Yes	
Power consumption	8VA		30VA Peak, 8VA		10VA		30VA Peak, 10VA	
Torque	180 in.lb. [20 Nm] at rated voltage				360 in.lb. [40 Nm] at rated voltage			
Weight	4.5 lbs . [2 kg]				7 lbs [3.2 kg]			
Running time through 90°	60 to 85 sec torque dependant							
Feedback	4 to 20 mA or 2 to 10 VDC adjustable							
Power supply	28 to 32 VDC or 22 to 26 VAC							
Electrical connection	18 AWG [$0.8 \mathrm{~mm}^{2}$] minimum							
Inlet bushing	2 inlet bushing of $7 / 8$ in [22.2 mm]							
Control signal	Analog, Digital or Pulse with modulation (PWM) programmable (factory set with Analog control signal)							
Angle of rotation	0 to 90 degrees, electronically adjustable (factory set with 90° stroke)							
Direction of rotation	Reversible, Clockwise (CW) or Counterclockwise (CCW) (factory set with CW direction)							
Ambient temperature	$0^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}\left[-18^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right]$							
Storage temperature	$-22^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}\left[-30^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right]$							
Relative Humidity	5 to 95% non condensing.							
Warning: Do not press the clutch when actuator is powered								

Dimensions

| |
| :--- | :--- |

Caution

We strongly recommend that all neptronic $®$ products be wired to a separate transformer and that transformer shall service only neptronic $®$ products. This precaution will prevent interference with, and/or possible damage to incompatible equipment.
When multiple actuators are wired on a single transformer, polarity must be observed. Long wiring runs create voltage drop which may affect the actuator performance.

[^0]Mechanical installation

Wiring Diagrams

Special consideration for Digital control
In this mode, actuator is sensitive to induced electrical voltages from other sources. To prevent such interference, wire one 2.2 k ohm 0.5 W resistor between pins 4 and 1 and a second 2.2 k ohm 0.5 W resistor between pins 3 and 1 . These resistors are supplied.
For 2 to 10 VDC output feedback
For any of above wiring configurations, connect one of the supplied 500 ohm resistors between pins 1 and 5 .

PC Board

Dip switch settings

Stroke adjustment - No control signal change

1. Apply power and, wait for at least 10 seconds.
2. Press and release the reset button to start the auto-stroke process.

The LED should be illuminated.

- First option:

The actuator will then travel in both directions to find it's limit and position itself according to the demand. The LED will extinguish, the process is complete.

- Second option:

When the desired end position is reached, press and release the reset button. The actuator will now return back to its original position. (you can also press and release the reset button when It's reaches the original position) The LED will extinguish, the process is complete.

Programming - Change of control signal

1. Remove power and put all dip switches "OFF". (factory preset).
2. Apply power and, within $\mathbf{1 0}$ seconds, press and release the reset button. The LED should be blinking.
3. Select the control signal with dip switches:

- Digital (On/Off or 3 point floating)
move switch No1 "ON" and then "OFF".
- PWM
move switch No2 "ON" and then "OFF".
- Analog (factory preset)
move switch No3 "ON" and then "OFF".

4. Stroke adjustment
see the stroke adjustment section above.
Note, If PWM mode is selected:

- Time base : When programming is done,
if switch No3 is "on" time base is 0.1 to 5 sec . (resolution 20 msec .)
if switch No3 is "off" time base is 0.1 to 25 sec . (resolution 100 msec .)
* For 5 sec. time base, we strongly recommend a switch common connection for better position stability.
- Switch 24 VAC: Triac or dry contact, 40 mA maximum switching current.
- Switch common: NPN transistor, SCR, Triac or dry contact 75 mA maximum switching current.

Feedback selection (CCW direction)

To select CCW direction put switch No1 "ON".

In Analog or 3 point floating mode you can program the feedback control.

If switch No3 is "OFF":
The feedback control is automatically reverse to 4 to 20 mA for 90 to 0 degrees.

If switch No3 is "ON":
The feedback control is to 20 to 4 mA for 90 to 0 degrees.

Zero and span calibration

This feature is applicable to analog control signal only.

1. Remove power and put all dip switches "OFF". (factory preset).
2. Apply power and, within $\mathbf{1 0}$ seconds press and hold the reset button until the LED blinks once.

The Zero and span calibration process then start.
3. Release the reset button. The LED is now constantly illuminated.
4. Apply new minimum voltage.

It can be any value between 0 to 7 VDC, with an external 0 to 10 volt supply (ex: MEP).
5. Press and release the reset button to memorize the new minimum voltage. The LED blinks once.
6. Apply new maximum voltage.

It can be any value between 3 to 10 VDC, this value should be greater than the new minimum value.
7. Press and release the reset button to memorize the new maximum voltage. The LED blinks once. The Zero and span calibration process is complete.
Note: To reset zero and span to 2 to 10 VDC (factory value). You just have to re-select the analog control signal mode, see Programming.

[^0]: ${ }^{1}$ Enerdrive System U.S.A. Patent \#5,278,454

